High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues
نویسندگان
چکیده
Functional characterization of the transcriptome requires tools for the systematic investigation of RNA post-transcriptional modifications. 2'-O-methylation (2'-OMe) of the ribose moiety is one of the most abundant post-transcriptional modifications of RNA, although its systematic analysis is difficult due to the lack of reliable high-throughput mapping methods. We describe here a novel high-throughput approach, named 2OMe-seq, that enables fast and accurate mapping at single-base resolution, and relative quantitation, of 2'-OMe modified residues. We compare our method to other state-of-art approaches, and show that it achieves higher sensitivity and specificity. By applying 2OMe-seq to HeLa cells, we show that it is able to recover the majority of the annotated 2'-OMe sites on ribosomal RNA. By performing knockdown of the Fibrillarin methyltransferase in mouse embryonic stem cells (ESCs) we show the ability of 2OMe-seq to capture 2'-O-Methylation level variations. Moreover, using 2OMe-seq data we here report the discovery of 12 previously unannotated 2'-OMe sites across 18S and 28S rRNAs, 11 of which are conserved in both human and mouse cells, and assigned the respective snoRNAs for all sites. Our approach expands the repertoire of methods for transcriptome-wide mapping of RNA post-transcriptional modifications, and promises to provide novel insights into the role of this modification.
منابع مشابه
meRanTK: methylated RNA analysis ToolKit
UNLABELLED The significance and function of posttranscriptional cytosine methylation in poly(A)RNA attracts great interest but is still poorly understood. High-throughput sequencing of RNA treated with bisulfite (RNA-BSseq) or subjected to enrichment techniques like Aza-IP or miCLIP enables transcriptome wide studies of this particular modification at single base pair resolution. However, to da...
متن کاملProfiling of 2′-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity
Ribose methylation is one of the two most abundant modifications in human ribosomal RNA and is believed to be important for ribosome biogenesis, mRNA selectivity and translational fidelity. We have applied RiboMeth-seq to rRNA from HeLa cells for ribosome-wide, quantitative mapping of 2'-O-Me sites and obtained a comprehensive set of 106 sites, including two novel sites, and with plausible box ...
متن کاملCrystal structure of 2'-O-Me(CGCGCG)2, an RNA duplex at 1.30 A resolution. Hydration pattern of 2'-O-methylated RNA.
The molecular and crystal structure of 2'-O-Me (CGCGCG)2 has been determined using synchrotron radiation at near-atomic resolution (1.30 A), the highest resolution to date in the RNA field. The crystal structure is a half-turn A-type helix with some helical parameters deviating from canonical A-RNA, such as low base pair rise, elevated helical twist and inclination angles. In CG steps, inter-st...
متن کاملA mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA.
We present a rapid experimental strategy for inferring base pairs in structured RNAs via an information-rich extension of classic chemical mapping approaches. The mutate-and-map method, previously applied to a DNA/RNA helix, systematically searches for single mutations that enhance the chemical accessibility of base-pairing partners distant in sequence. To test this strategy for structured RNAs...
متن کاملPredominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc
Characterization of DNA methylation patterns in the Pacific oyster, Crassostrea gigas, indicates that this epigenetic mechanism plays an important functional role in gene regulation and may be involved in the regulation of developmental processes and environmental responses. However, previous studies have been limited to in silico analyses or characterization of DNA methylation at the single ge...
متن کامل